Asymptotically Optimal Thickness Bounds of Generalized Bar Visibility Graphs

Hsien-Chih Chang Hsueh-I Lu Yen-Peng Sung

February 20, 2010 Revised — January 24, 2016

Abstract

Given a set of disjoint horizontal line segments (call bars), the distance of two bars is the minimum number of the other bars that a vertical line segment joining the two bars passes through. A graph \(G \) is a \(\text{bar } k \)-visibility graph if \(G \) can be represented as a set of disjoint bars such that two vertices are adjacent in \(G \) if and only if the distance of their associated bars is at most \(k \). A graph \(G \) is a \(\text{semi bar } k \)-visibility graph if \(G \) can be represented as a set of disjoint bars whose left endpoints have the same \(x \)-coordinates such that two vertices are adjacent in \(G \) if and only if the distance of their associated bars is at most \(k \). The thickness of \(G \) is the minimum number of planar subgraphs whose union is \(G \).

Dean et al. gave the best previously known upper bound \(3k(6k+1) \) on the thickness of bar \(k \)-visibility graphs. Hartke et al. proved that \(K_{4k+4} \) is a bar \(k \)-visibility graph, so the upper bound on the thickness of bar \(k \)-visibility graphs is at least \(\lceil(2k+3)/3 \rceil \). Felsner and Massow gave an upper bound on the thickness of semi bar \(1 \)-visibility graphs. Felsner and Massow proved that \(K_{2k+3} \) is a semi bar \(k \) visibility graph, so the upper bound on the thickness of semi bar \(k \) visibility graphs is at least \(\lceil(2k+5)/6 \rceil \). We reduce the upper bound to \(3k+3 \) on the thickness of bar \(k \)-visibility graphs, and give an upper bound \(2k \) for semi bar \(k \)-visibility graphs.

1 Introduction

All graphs are simple throughout the paper. Consider a set \(B \) of disjoint bars, that is, horizontal line segments. For any two bars \(u \) and \(v \) in \(B \), the vertical distance \(d(u,v) \) in \(B \) is the smallest integer \(k \) such that there is a vertical line segment whose endpoints are at \(u \) and \(v \) passing through \(k \) other bars. Dean et al. [3,4] defined that a graph \(G \) is a \(\text{bar } k \)-visibility graph if \(G \) can be represented as a set of disjoint bars such that any two vertices are adjacent in \(G \) if and only if \(d(u,v) \leq k \), where \(u \) and \(v \) are the associated bars with those vertices. Given a bar \(k \)-visibility graph, we called the corresponding representation a \(\text{bar } k \)-visibility representation. The cases with \(k \) equals 0 and 1 are illustrated in Figure 1. Bar 0-visibility graphs are also known as the bar visibility graphs [2,5]. For \(k = \infty \), bar \(k \)-visibility graphs are exactly the interval graphs (see, for

![Figure 1: A bar 0-visibility graph, a bar 1-visibility graph, and their common representation.](image-url)
We denote \mathcal{B}_k as the family of bar k-visibility graphs. Felsner and Massow \cite{6,7} defined that a graph G is a \textit{semi bar k-visibility graph} if G can be represented as a set of disjoint bars whose left endpoints have the same x-coordinates such that any two vertices are adjacent in G if and only if $d(u, v) \leq k$, where u and v are the associated bars with those vertices. The corresponding representation is called a \textit{semi bar k-visibility representation}. The case with $k = 1$ is illustrated in Figure 2. We denote \mathcal{S}_k as the family of semi bar k-visibility graphs. The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs whose union is G (see, for example, \cite{14}). For any family of graphs \mathcal{G}, let $\theta(\mathcal{G}) := \max_{G \in \mathcal{G}} \theta(G)$.

The goal of this paper is to study the thickness of bar k-visibility graphs and semi bar k-visibility graphs. For the special case when $k = 1$, Dean et al. \cite{3,4} proved that $\theta(\mathcal{B}_1) \leq 4$, and conjectured that $\theta(\mathcal{B}_1) \leq 2$, which was disproved by Felsner and Massow \cite{6,7}. Felsner and Massow also gave a constructive proof for $\theta(\mathcal{S}_1) = 2$. In this paper, we focus on $\theta(\mathcal{B}_k)$ and $\theta(\mathcal{S}_k)$ for general k. Dean et al. \cite{3,4} gave the best previously upper bound $3k(6k + 1)$ on $\theta(\mathcal{B}_k)$. We reduce the upper bound to $3k + 3$. It is known that $\theta(\mathcal{B}_k)$ is at least $[(2k + 3)/3]$ as Dean et al. proved that complete graph K_{4k+4} is in \mathcal{B}_k. Hence our first result is asymptotically optimal. We also give the first upper bound $2k$ on $\theta(\mathcal{S}_k)$. Felsner and Massow \cite{6,7} proved that complete graph K_{2k+1} is in \mathcal{S}_k, so $\theta(\mathcal{S}_k)$ is at least $[(2k + 5)/6]$. Hence our second result is asymptotically optimal.

Table 1 compares previous work and our results. In summary, we prove the following theorem.

\textbf{Theorem 1.}

1. If G is a bar k-visibility graph, then $\theta(G) \leq 3k + 3$ for any $k \geq 0$.
2. If G is a semi bar k-visibility graph, then $\theta(G) \leq 2k$ for any $k \geq 1$.

\textbf{The importance of the problem.} Mansfield \cite{9} proved that determining the thickness of a graph is NP-hard. The class of graphs whose thickness is known is few—for example, complete graphs and hypercubes (see \cite{10}). If we know better upper bound on the thickness of the graph, then in VLSI design, we can embed the graph using fewer layers \cite{1}. In the scheduling of multihop radio networks, Ramanathan and Lloyd \cite{12,13} gave an approximation algorithm

<table>
<thead>
<tr>
<th></th>
<th>$\theta(\mathcal{B}_k)$</th>
<th>$\theta(\mathcal{S}_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 1$</td>
<td>≤ 4</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$k \geq 1$</td>
<td>$\leq 3k(6k + 1)$</td>
<td>$\geq [(2k + 5)/6]$</td>
</tr>
</tbody>
</table>

Table 1: Previous work and our result.

![Figure 2: A semi bar 1-visibility graph with its representation.](image)
for the schedule where the number of time slots is bounded by a function of the thickness of a graph.

Related work on the problem. Dean et al. [3,4] study bar k-visibility graphs and gave bounds on the maximum number of edges and chromatic number of B_k. Hartke et al. [8] improved the result by sharpening the bound on maximum number of edges. Hartke et al. also provided some other facts about bar k-visibility graphs. They proved that complete graph K_{4k+4} is indeed the largest complete graph in B_k, as conjectured by Dean et al. [3,4]; they constructed some forbidden induced subgraphs of the class B_k; and they discussed regular bar k-visibility graphs. Felsner and Massow [6,7] gave bounds on semi bar k-visibility graphs, and gave bounds of chromatic number, clique number, maximum number of edges, and connectivity on S_k. They proved that K_{2k+3} is the largest complete graph that can be in S_k. Also the yproved that the upper bounds on geometric thickness of S_1 is also at most 2. Given a semi bar k-visibility graph and an order of bars corresponding to the nodes, Felsner and Massow gave a method to reconstruct a semi bar k-visibility representation.

2 Bar k-visibility graph

Given a graph G, $V(G)$ is the node set of G and $E(G)$ is the edge set of G. Denote n_G the number of nodes in G and m_G the number of edges in G. Consider graph G in B_k. If R is a bar k-visibility representation of G, we denote G as $G(R)$, and the bar in R which corresponds to vertex x in G by b_x or $b(x)$.

2.1 Weak bar k-visibility graph

A graph G is a weak bar k-visibility graph if G is a subgraph of a bar k-visibility graph. The case with $k = 1$ is illustrated in Figure 3. We denote W_k as the family of weak bar k-visibility graphs.

Lemma 2.1. If $G \in W_k$, then there is a graph $H \in B_k$, such that $n_G = n_H$ and G is a subgraph of H.

Proof. Suppose that G' is a bar k-visibility graph and G is a subgraph of G'. Let R' be a bar k-visibility representation of G', and $R^* = R' - B$, where B is the set of the associated bars of the vertices in $V(G') - V(G)$. Since for every vertex pair (u,v) where $u \in V(G)$ and $v \in V(G')$, if $d(b_u, b_v) \leq k$ in R', then $d(b_u, b_v) \leq k$ in R^*, we know that for every edge $e \in E(G)$, $e \in E(G(R^*))$. Hence G is a subgraph of $G(R^*)$ and $n_G = n_{G(R^*)}$. □

Lemma 2.2 (Hartke et al. [8]). If $G \in B_k$ and $n_G \geq 2k + 2$, then $m_G \leq (k + 1)(3n_G - 4k - 6)$.

![Figure 3: A weak bar 1-visibility graph with its supergraph, and the bar 1-visibility representation of the supergraph.](image-url)
2.2 Arboricity

The arboricity $arb(G)$ of a graph G is the minimum number of forests whose union is G, (see, for example, [14]). We know that

$$\theta(G) \leq arb(G) \quad (1)$$

holds for any graph G, because the thickness of a forest is one.

Lemma 2.3 (Nash-Williams [11]). For any graph G,

$$arb(G) = \max \left\{ \left\lfloor \frac{m_H}{n_H - 1} \right\rfloor : H \subseteq G, n_H > 1 \right\}.$$

2.3 Proof of Theorem 1.1

Proof. Consider any subgraph H of G. We have the following two cases.

- Case 1: $1 < n_H < 2k + 2$.
 Since the number of edges for every simple graph with n nodes is at most $\binom{n}{2}$, we have
 $$\frac{m_H}{n_H - 1} \leq \frac{n_H \cdot (n_H - 1)/2}{n_H - 1} = \frac{n_H}{2} < k + 1.$$

- Case 2: $n_H \geq 2k + 2$.
 By the definition of W_k and Lemma 2.1, there exists a graph $H' \in B_k$, such that $n_H = n_{H'}$ and H is a subgraph of H'. Hence we know $m_H \leq m_{H'}$. By Lemma 2.2, we know $m_{H'} \leq (k + 1)(3n_{H'} - 4k - 6)$. Therefore,
 $$\frac{m_H}{n_H - 1} \leq \frac{m_{H'}}{n_{H'} - 1} \leq \frac{(k + 1)(3n_{H'} - 4k - 6)}{n_{H'} - 1} \leq \frac{(k + 1)(3n_{H} - 4k - 6)}{n_{H} - 1} = 3(k + 1) - \frac{4k^2 + 7k + 3}{n_{H} - 1} \leq 3k + 3.$$

It follows from Lemma 2.3, that we know $arb(G) \leq 3k + 3$. By (1), we have $\theta(G) \leq 3k + 3$. \qed

3 Semi bar k-visibility graph

3.1 Semi bar exactly k-visibility graph

A graph G is a semi bar exactly k-visibility graph if G can be represented as a set of disjoint bars whose left endpoints have the same x-coordinates such that any two vertices are adjacent in G if and only if $d(u, v) = k$, where u and v are the associated bars with those vertices. The case with $k = 1$ is illustrated in Figure 4. We denote SE_k as the family of semi bar exactly k-visibility graphs. The outdegree $\deg^+(v)$ of a vertex v is the number of outward directed edges from v (see, for example, [14]).

Lemma 3.1. If $G \in SE_k$, then there is an orientation of edges of G such that for every vertex v, $\deg^+(v) \leq 2$.

Proof. We denote the length of bar b by $\ell(b)$. We label the edges of G by $1, 2, \ldots, m_G$, then we orient the edges of G from 1 to m_G according to the following rule: let R be a semi bar exactly k-visibility representation of G. For each $j = 1, \ldots, m_G$, let edge $e_j = (x_j, y_j)$. If $\ell(b(x_j)) \geq \ell(b(y_j))$ in R, then we give e_j the orientation from y_j to x_j, otherwise we give e_j the orientation from x_j to y_j. We name the graph G^*. For any vertex v, suppose that there are more than two bars b_1, b_2, \ldots, b_q which are above b_v, such that for each i with $1 \leq i \leq q$, $d(b_i, b_v) = k$ and the orientation of the edges in G^* corresponding to (b_i, b_v) is pointed out from v. Let two of those bars be b_s and b_t, $\ell(b_s) \geq \ell(b_t)$ and $\ell(b_s) \geq \ell(b_t)$, so every vertical line segment whose endpoints are at b_s and b_t has to pass through b_i. Hence $d(b_s, b_v) \neq d(b_t, b_v)$, which is a contradiction. Therefore, there is at most one bar which is above b_v, such that the orientation of the edge in G^* corresponding to the bar pair is pointed out from v. Similarly, there is at most one bar which is below b_v, such that the orientation of the edge in G^* corresponding to the bar pair is pointed out from v. So, $\deg^+(v) \leq 2$. \hfill \Box

Lemma 3.2. If G admits an orientation such that $\deg^+(v) \leq d$ for every vertex v, then $\theta(G) \leq d$.

Proof. By this orientation, we label the outgoing edges of every vertex by $1, 2, \ldots, d$. Let E_i be the set of the edges labeled i, and $G_i = (V(G), E_i)$ for each i with $1 \leq i \leq d$, then we know for any component in G_i for each i with $1 \leq i \leq d$, the number of edges in the component is at most the number of nodes in the component, because G_i has an orientation, such that for every vertex v, $\deg^+(v) \leq 1$. Hence $\theta(G_i) = 1$ for each i with $1 \leq i \leq d$. Since $\bigcup_{i=1}^d E_i = E(G)$ and $E_i \cap E_j = \emptyset$ for any indices i and j with $i \neq j$, we have

$$\theta(G) \leq \sum_{i=1}^d \theta(G_i) = \sum_{i=1}^d 1 = d. \hfill \Box$$

Lemma 3.3 (Felsner and Massow [7]). If $G \in S_1$, then $\theta(G) \leq 2$.

3.2 Proof of Theorem 1.2

Proof. Suppose that R is a semi bar k-visibility representation of G. Let

$$E_i = \{(x, y) : d(b_x, b_y) = i\},$$

$$G_i = (V(G), E_i).$$

We have $G_i \in S_{E_i}$ for each i with $0 \leq i \leq k$, and $\bigcup_{i=0}^k E_i = E(G)$. By Lemma 3.1 and Lemma 3.2, we know $\theta(G_i) \leq 2$ for each i with $0 \leq i \leq k$. By the definitions of S_k and S_{E_k}, we know $G_0 \cup G_1 \in S_1$. By Lemma 3.3, $\theta(G_0 \cup G_1) \leq 2$. Therefore,

$$\theta(G) \leq \theta(G_0 \cup G_1) + \sum_{i=2}^k \theta(G_i) \leq 2 + 2(k - 1) = 2k. \hfill \Box$$
References

